Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy.
نویسندگان
چکیده
Glucocorticoids mediate muscle atrophy in many catabolic states. Myostatin expression, a negative regulator of muscle growth, is increased by glucocorticoids and myostatin overexpression is associated with lower muscle mass. This suggests that myostatin is required for the catabolic effects of glucocorticoids. We therefore investigated whether myostatin gene disruption could prevent muscle atrophy caused by glucocorticoids. Male myostatin knockout (KO) and wild-type mice were subjected to dexamethasone treatment (1 mg/kg.d for 10 d or 5 mg/kg.d for 4 d). In wild-type mice, daily administration of low-dose dexamethasone for 10 d resulted in muscle atrophy (tibialis anterior: -15%; gastrocnemius: -13%; P < 0.01) due to 15% decrease in the muscle fiber cross-sectional area (1621 +/- 31 vs. 1918 +/- 64 microm(2), P < 0.01). In KO mice, there was no reduction of muscle mass nor fiber cross-sectional area after dexamethasone treatment. Muscle atrophy after 4 d of high-dose dexamethasone was associated with increased mRNA of enzymes involved in proteolytic pathways (atrogin-1, muscle ring finger 1, and cathepsin L) and increased chymotrypsin-like proteasomal activity. In contrast, the mRNA of these enzymes and the proteasomal activity were not significantly affected by dexamethasone in KO mice. Muscle IGF-I mRNA was paradoxically decreased in KO mice (-35%, P < 0.05); this was associated with a potentially compensatory increase of IGF-II expression in both saline and dexamethasone-treated KO mice (2-fold, P < 0.01). In conclusion, our results show that myostatin deletion prevents muscle atrophy in glucocorticoid-treated mice, by blunting the glucocorticoid-induced enhanced proteolysis, and suggest an important role of myostatin in muscle atrophy caused by glucocorticoids.
منابع مشابه
Characterization of 5'-regulatory region of human myostatin gene: regulation by dexamethasone in vitro.
We cloned and characterized a 3.3-kb fragment containing the 5'-regulatory region of the human myostatin gene. The promoter sequence contains putative muscle growth response elements for glucocorticoid, androgen, thyroid hormone, myogenic differentiation factor 1, myocyte enhancer factor 2, peroxisome proliferator-activated receptor, and nuclear factor-kappaB. To identify sites important for my...
متن کاملGenetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure.
BACKGROUND Cardiac cachexia is characterized by an exaggerated loss of skeletal muscle, weakness, and exercise intolerance, although the cause of these effects remains unknown. Here, we hypothesized that the heart functions as an endocrine organ in promoting systemic cachexia by secreting peptide factors such as myostatin. Myostatin is a cytokine of the transforming growth factor-beta superfami...
متن کاملMyostatin Suppression of Akirin1 Mediates Glucocorticoid-Induced Satellite Cell Dysfunction
Glucocorticoids production is increased in many pathological conditions that are associated with muscle loss, but their role in causing muscle wasting is not fully understood. We have demonstrated a new mechanism of glucocorticoid-induced muscle atrophy: Dexamethasone (Dex) suppresses satellite cell function contributing to the development of muscle atrophy. Specifically, we found that Dex decr...
متن کاملGlucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression.
The mechanisms by which excessive glucocorticoids cause muscular atrophy remain unclear. We previously demonstrated that dexamethasone increases the expression of myostatin, a negative regulator of skeletal muscle mass, in vitro. In the present study, we tested the hypothesis that dexamethasone-induced muscle loss is associated with increased myostatin expression in vivo. Daily administration (...
متن کاملGlucocorticoids Enhance Muscle Proteolysis through a Myostatin-Dependent Pathway at the Early Stage
Myostatin, a member of the TGF-β superfamily of secreted proteins, is expressed primarily in skeletal muscle. It negatively regulates muscle mass and is associated with glucocorticoid-induced muscle atrophy. However, it remains unclear whether myostatin is involved in glucocorticoid-induced muscle protein turnover. The aim of the present study was to investigate the role of myostatin in protein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 148 1 شماره
صفحات -
تاریخ انتشار 2007